
Agec: An Execution-Semantic Clone Detection Tool

Toshihiro Kamiya

Department of Media Architecture, School of Systems Information Science, Future University Hakodate

116-2 Kamedanakano-cho, Hakodate, Hokkaido, Japan 041-8655. Email: kamiya@fun.ac.jp

Abstract—Agec is a semantic code-clone detection tool from
Java bytecode, which (1) applies a kind of abstract interpretation
to bytecode as a static analysis, in order to generate n-grams
of possible execution traces, (2) detects the same n-grams from
distinct places of the bytecode, and (3) then reports these n-
grams as code clones. The strengths of the tool are: static
analysis (no need for test cases), detection of clones of deeply
nested invocations, and Map-Reduce ready detection algorithms
for scalability.

I. INTRODUCTION

Refactoring is an important application of code-clone de-

tection. A number of code-clone detection tools have been

designed to detect the code fragments that need to be refac-

tored. Moreover, such clone detection tools should be able

to detect a code clone which includes both not-yet-refactored

code fragments and the refactored code fragments equivalent

to them.

This paper presents a code-clone detection tool named

Agec, based on an execution model of multi-level invocation,

which detects code fragments equivalent in terms of method

invocation, but not equivalent in terms of code structure (thus,

semantic clones).

Figure 1 shows a motivationg example as an example

code, which includes both refactored code (a) and not-yet-

refactored code (b). These codes apparently have distinct

code structures; nonetheless, the methods invoked during their

executions are the same. Agec reports these code fragments

as a code clone.

Contributions of the proposed method/tool are:

1) a method for a kind of abstract interpretation, to track

multi-level invocations and generate possible execution

sequences

2) a definition of equivalency for such arbitrary granularity

execution sequences

3) a working prototype clone-detection tool for empirical

evaluation

II. ARBITRARY-GRANULARITY EXECUTION SEQUENCE

To determine which two code fragments are equivalent,

algorithms need to compare code fragments as a sequence (or

some kind of data structure such as a sub-graph) of unit entities

of software products. However, which entities can become

such “unit” entities is a tough question to answer. The existing

clone-detection methods/tools consider this point in their own

assumptions (or approximations): some use characters or lines

[15][16], some use syntactic tokens[1][3][8][10], some use the

nodes of a AST[4][7], some use the nodes of a PDG[9][11][14]

Fig. 1. An Example Code Undergoing Refactoring

or design diagrams [2][6][17], and some use bytecode instruc-

tions [13].

The proposed detection method generates possible method

invocation sequences with a kind of abstract interpretation in a

static way. The detection method compares code fragments as

a sequence of method invocations; however, the “unit” entities

are not limited to the methods directly invoked, but all methods

at all nesting levels of method invocations are regarded as such

unit entities.

This multi-level (thus arbitrary-granularity) equivalency en-

ables a semantic clone detection. When the same method

invocation sequence is “folded” into two distinct code struc-

tures, such as a code fragment in a method and the two code

fragments of two methods that are executed sequentially in

a program execution, such two structures are the same by

definition.

III. STEPS OF THE DETECTION METHOD

The proposed clone-detection method consists of the fol-

lowing steps:

978-1-4673-3091-6/13/$31.00 c© 2013 IEEE ICPC 2013, San Francisco, CA, USA227

Fig. 2. Illustration of Control Dependencies among Nested Methods

1) Generating arbitrary-granularity execution sequences

2) Extracting n-grams from execution sequences

3) Detecting the same n-grams from distinct locations

Figure 2 shows an example to explain how each step works.

First, in step 1, execution traces in each method are generated.

At each method invocation, one execution trace is converted

into two traces, one includes the method as itself and the

other tracks inside of the called method definition. In the

Figure, abx and abcd are one of such two traces, and here

the sub-sequence cd within the latter is invoked inside of

x. Next, in step 2, n-grams (2-grams, here) are extracted

from all positions of all these traces. Finally, in step 3, the

same n-grams that are generated from the distinct positions

are detected as code clones. The n-gram cd appears at three

locations in the execution traces: abcd (within method m),

acde (also within method m), and cd (within method x). The

second n-gram location includes an invocation of c directly

from m’s definition and an invocation of d via method y, which

is invoked from m.

If we did not consider an arbitrary-granularity execution

sequence, but collect execution traces from just the surface of

each method definition, the execution sequences shown in the

gray background would not generated and thus the code clone

of n-gram cd would not be detected in this case.

IV. PROTOTYPE IMPLEMENTATION

A prototype CLI tool has been implemented in about 1500

lines of Python code. Figure 3 shows a screen capture of a

terminal where the tool is applied to a Java code in Figure

1. Here, the output (a file “clone-linenums.txt”) includes

locations of code fragments of each code clone and its method

invocation sequence to help understanding functions of such

code fragments.

A. Performance

The proposed detection method implies generating a large

number of n-grams, and this could be a performance flaw. As

an early empirical evaluation, the prototype implementation

was applied to an open-source product, namely ArgoUML

TABLE I
PRODUCT SIZE AND CODE-CLONE DETECTION RESULT FROM ARGOUML

Metric Value

Classes having method definitions 1,700
Method definitions 8,888

Locations where n-grams were generated 1,232,292
Distinct n-grams 282,753
n-grams of code clones 4,634

TABLE II
PERFORMANCE DATA OF CODE-CLONE DETECTION FROM ARGOUML

Step Elapsed time (sec.) Peak memory use (MiB)

Disassemble of bytecode 1,351 n/a
Step 1 and Step 2 387 564
Step 3 38 500
Format code fragments 3 57

0.28.11. The detection result is shown in Table I, where the

given n-gram size is 6. The performance data are shown in

Table II. The tool was run on a PC with a CPU Intel Xeon

E5520 2.27GHz and memory 32GiB. No multi-threading was

used in the implementation, so that the elapsed time is almost

the same as the CPU time.

V. DISCUSSIONS/RELATED WORK

The original motivation of this study was to find out a code

clone, which includes code fragments scattered in methods, as

a result of a refactoring (code modification) presented in [12].

The proposed approach employs a kind of abstract in-

terpretation of Java bytecode. Another study of an abstract

interpretation for code-clone detection is found in [5].

The prototype implementation is hosted in a GitHub page2.

The tool is not matured, and still needs optimizations such

as memorization in n-gram extraction or a Map-Reduce style

1http://argouml.tigris.org/
2http://github.com/tos-kamiya/agec

228

Fig. 3. Screen Capture of Application of Tool to the Example

detection algorithm. The detection algorithm also needs refine-

ment to permit more code modifications by refactoring tasks.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Num-

ber 24650013.

REFERENCES

[1] H. Abdul Basit and S. Jarzabek, “A Data Mining Approach for Detecting
Higher-Level Clones in Software,” IEEE TSE, vol. 35, no. 4, pp. 497-514,
2009.

[2] M. Alalfi, J. Cordy, T. Dean, M. Stephan, and A. Stevenson, “Near-Miss
Model Clone Detection for Simulink Models,” 6th Int’l Workshop on
Software Clone (IWSC’12), pp. 78-79, 2012.

[3] B. Baker, “Finding Clones with Dup: Analysis of an Experiment,” IEEE

TSE, vol. 33, no. 9, pp. 608-621, 2007

[4] I.D. Baxter, A. Yahin, L. Moura, M. Sant ’Anna, and L. Bier, “Clone De-
tection Using Abstract Syntax Trees,” Int ’ l Conf. Software Maintenance
(ICSM’98), 1998.

[5] W. Evans, C. Fraser, Fei Ma, “Clone Detection via Structural Abstrac-
tion,” 14th Working Conf. Rev. Eng. (WCRE’07), pp. 150-159, 2007.

[6] B. Hummel, E. Juergens, and D. Steidl, “Index-Based Model Clone
Detection,” 5th Int’l Workshop Softw. Clone (IWSC’11), pp. 21-27, 2011.

[7] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
Accurate Tree-Based Detection of Code Clones,” IEEE ICSE ’07, pp.
96-105, 2007.

[8] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multi- Linguistic
Token-Based Code Clone Detection System for Large Scale Source
Code,” IEEE TSE, vol. 28, no. 7, pp. 654-670, 2002.

[9] R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication
in Source Code,” 8th Int’l Sympo. Static Analysis (SAS’01), p. 40-56,
2001.

[10] L. Prechelt, G. Malphol, and M. Philippsen, “Finding Plagiarisms among
a Set of Programs with JPlag,” Journal of Universal Computer Sci., vol.
8, no. 11, pp. 1016-1038, 2002.

[11] Y. Higo, Y. Ueda, M. Nishino, and S. Kusumoto, “Incremental Code
Clone Detection: a Pdg-Based Approach,” 18th Working Conf. Rev. Eng.
(WCRE’11) pp.3-12, 2011.

[12] T. Kamiya, “Conte∗t clones or re-thinking clone on a call graph,” 6th
Int’l Workshop Softw. Clone (IWSC’12), pp. 74-75, 2012.

[13] I. Keivanloo, Chanchal K. Roy, J. Rilling, “Java Bytecode Clone Detec-
tion via Relaxation on Code Fingerprint and Semantic Web reasoning,”
6th Int’l Workshop Softw. Clone (IWSC’12), pp. 36-42, 2012.

[14] J. Krinke, “Identifying Similar Code with Program Dependence Graphs,”
8th Working Conf. Rev. Eng. (WCRE’01), pp. 301-309, 2001.

[15] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “ CP-Miner: Finding Copy-
Paste and Related Bugs in Large-Scale Software Code,” IEEE TSE, vol.
32, no. 3, pp. 289-302, 2004.

[16] C.K. Roy and J.R. Cordy, “NiCad: Accurate Detection of Near-Miss In-
tentional Clones Using Flexible Pretty-Printing and Code Normalization,”
IEEE ICPC’08, pp. 172-181, 2008.

[17] U. Tekin, U. Erdemir, and F. Buzluca, “Mining Object-Oriented Design
Models for Detecting Identical Design Structures,” 6th Int’l Workshop
Softw. Clone (IWSC’12), pp. 43-49, 2012.

229

